Skip to contents

Predicts the cluster labels for a reference data set to a query data set using lda.

Usage

predict_data(
  obj = obj,
  data_query = query,
  ref_clusters = NULL,
  FSC.A = "FSC.A",
  FSC.H = "FSC.H",
  pred_name = "clusters_predicted",
  assay_ref = NULL,
  assay_query = NULL,
  chunk_size = 1e+06,
  return_obj = TRUE
)

Arguments

obj

The Seurat object.

data_query

A data frame or a Seurat object with the cells whose labels should be predicted.

ref_clusters

The meta.data column with the reference cluster labels.

FSC.A

The name of the column containing the FSC.A scatter parameter.

FSC.H

The name of the column containing the FSC.H scatter parameter.

pred_name

The name of the meta.data column for predicted cluster labels (character vector).

assay_ref

The name of the Seurat assay which was used to calculate the reference cluster labels.

assay_query

The name of the Seurat assay containing cells whose labels should be predicted. Only if the query is provided as a Seurat object.

chunk_size

Chunk size for the prediction progress for verbose output to standard out.

return_obj

Boolean. Add the predicted cluster labels to the Seurat object? Only if the query is provided as a data frame.

Value

Seurat object or data frame containing the predicted cluster labels.

References

Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0

Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge University Press.